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Abstract
Violative chemical residues in animal-derived food products affect food safety globally and have impact on the trade of 
international agricultural products. The Food Animal Residue Avoidance Databank program has been developing scientific 
tools to provide appropriate withdrawal interval (WDI) estimations after extralabel drug use in food animals for the past 
three decades. One of the tools is physiologically based pharmacokinetic (PBPK) modeling, which is a mechanistic-based 
approach that can be used to predict tissue residues and WDIs. However, PBPK models are complicated and difficult to use 
by non-modelers. Therefore, a user-friendly PBPK modeling framework is needed to move this field forward. Flunixin was 
one of the top five violative drug residues identified in the United States from 2010 to 2016. The objective of this study was 
to establish a web-based user-friendly framework for the development of new PBPK models for drugs administered to food 
animals. Specifically, a new PBPK model for both cattle and swine after administration of flunixin meglumine was developed. 
Population analysis using Monte Carlo simulations was incorporated into the model to predict WDIs following extralabel 
administration of flunixin meglumine. The population PBPK model was converted to a web-based interactive PBPK (iPBPK) 
framework to facilitate its application. This iPBPK framework serves as a proof-of-concept for further improvements in 
the future and it can be applied to develop new models for other drugs in other food animal species, thereby facilitating the 
application of PBPK modeling in WDI estimation and food safety assessment.

Keywords  Flunixin · Interactive physiologically based pharmacokinetic (iPBPK) model · Food safety · Drug residues · 
Withdrawal intervals (WDIs) · Food Animal Residue Avoidance Databank (FARAD)

Introduction

Violative or potentially unsafe chemical residues, includ-
ing drugs, pesticides, environmental contaminants, natural 
toxins and other harmful substances in animal-derived food 
products are an important consideration for global food 

safety (Baynes and Riviere 2014; NRC 1999a; Sundlof and 
Cooper 1996). Food products with illegal chemical resi-
dues could increase the risk of harming consumer health. 
The presence of illegal drug residues in animal-derived 
food products can result in the suspension of the producer’s 
permit or certification, and affect the international trade 
of agricultural products (NRC 1999b). To mitigate drug 
residues and ensure animal-derived food safety, the Food 
Animal Residue Avoidance Databank (FARAD) program, 
a United States (US) congress-authorized and US Depart-
ment of Agriculture (USDA)-supported national program, 
was established in 1981 to provide a portal for drug residue 
information and develop scientific tools to provide appropri-
ate withdrawal interval (WDI) estimations for drugs in food 
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animals (Craigmill et al. 2006; Riviere et al. 2017). A WDI 
is the time for drug residues in the edible tissues to deplete 
below concentrations that are considered safe for humans 
(FDA 2012). Estimation of drug WDIs after extralabel use 
using scientific approaches is important to avoid violations 
of drug residues.

Physiologically based pharmacokinetic (PBPK) modeling 
is a mechanism-based computational approach that simu-
lates the absorption, distribution, metabolism and excretion 
(ADME) of chemicals in an organism (Lin et al. 2016a). 
PBPK modeling is a widely used scientific approach in the 
fields of drug discovery and development, as well as human 
health risk assessment of environmental chemicals (Rowland 
et al. 2011; Tan et al. 2018). FARAD has applied PBPK 
modeling to the field of food safety, and in the past two 
decades has developed multiple PBPK models for different 
drugs in food animals that helped to answer WDI inquires 
submitted to FARAD (Craigmill 2003; Li et al. 2017). Many 
independent research groups from different countries have 
developed PBPK models for various drugs in food animal 
species to support WDI determination for their respective 
regulatory legislations (Henri et al. 2017; Yang et al. 2012). 
However, one critical barrier in this field is that the pub-
lished models are difficult to use because different modeling 
software is involved; some groups do not publish the model 
code; and risk assessors often do not have the program-
ming skills to apply the published model codes. Therefore, 
a user-friendly PBPK modeling framework or methodology 
is needed to move this field forward.

Flunixin meglumine is the only nonsteroidal anti-inflam-
matory drug (NSAID) labeled in the US to use in food-pro-
ducing animals, including cattle and swine (FDA 1998). It 
is labeled for intravenous (IV) use in beef and dairy cattle 
(2.2 mg/kg body weight once a day or divided into 2 daily 
doses for up to 3 days) as a treatment for pyrexia associ-
ated with respiratory diseases, endotoxemia and mastitis, 
and to modulate inflammation in endotoxemia (Kleinhenz 
et al. 2016). Recently, a transdermal formulation has also 
been approved by FDA for treatment of pyrexia associated 
with bovine respiratory disease and the control of pain asso-
ciated with foot rot in beef cattle. FDA-approved uses in 
swine include intramuscular (IM) injection at the dose of 
2.2 mg/kg body weight as a single injection for the control of 
pyrexia associated with swine respiratory disease (Table S1, 
Supplementary Materials) (FDA 1998, 2005).

Although extralabel drug use (ELDU) of flunixin meg-
lumine is legal under the Animal Medicinal Drug Use 
Clarification Act (AMDUCA), it was still one of the top 
five violative drugs identified by USDA National Residue 
Program (“Red Book”) from 2010 to 2016 (USDA 2018). 
The majority of violative residues have been attributed to 
non-compliant or extralabel drug use (Kissell et al. 2012; 
KuKanich et al. 2005). One frequent example of this is IM 

administration of flunixin meglumine to cattle which can 
cause tissue damage and inflammation, resulting in delayed 
or incomplete absorption, leading to violative drug residues 
(Sidhu et al. 2017).

Since flunixin meglumine is an important drug in food-
producing animal, several different pharmacokinetic models 
have been developed in order to help predict WDIs (Leavens 
et al. 2014; Lin et al. 2016b; Wu et al. 2013). New phar-
macokinetic studies (Kissell et al. 2016; Kleinhenz et al. 
2016) have been carried out after the development of these 
pharmacokinetic models, necessitating that a new and more 
comprehensive PBPK model of flunixin for both cattle and 
swine be developed. Therefore, the objective of this study 
was to create a user-friendly interactive physiologically 
based pharmacokinetic (iPBPK) modeling framework that 
allows risk assessors, FARAD responders and other users 
to develop and apply PBPK models to predict drug WDIs 
in food animals. To illustrate the procedure of developing 
and applying a PBPK model using this framework, we chose 
to develop a population-based PBPK model for flunixin in 
cattle and swine as a case study. This iPBPK framework 
represents our first step of converting PBPK model codes 
into web-based interfaces and a significant advancement in 
the application of PBPK modeling in the field of toxicology. 
This framework still has some limitations that require further 
improvements, but it can be applied to develop new models 
for other drugs and environmental chemicals in other spe-
cies, as well as to translate published models to user-friendly 
interfaces. The developed model itself can help to predict a 
WDI after extralabel use in cattle and swine, and can also 
be extrapolated to other food animal production classes or 
exposure routes.

Materials and methods

Workflow for the interactive physiologically based 
pharmacokinetic (iPBPK) model development

The workflow of the iPBPK framework from the collec-
tion of pharmacokinetic data to the development of the 
iPBPK interface is depicted in Fig. 1a. In brief, the first 
step of developing a PBPK model is to collect pharma-
cokinetic data for model calibration and evaluation. Phar-
macokinetic data for drugs in food-producing animals 
can be acquired from PubMed, FARAD, or other bio-
medical databases. The present study collected relevant 
pharmacokinetic data from FARAD, because FARAD 
represents the largest and most comprehensive pharma-
cokinetic database for drugs in animals. With adequate 
pharmacokinetic data, a mechanistic PBPK model could 
be established and validated based on the method recently 
published (Li et al. 2017; Lin et al. 2016a). The model 
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structure of current model is shown in Fig. 1b. Next, 
the PBPK model in one species can be extrapolated to 
another species of interest and various statistical methods 
(e.g., Monte Carlo simulation) can be incorporated into 
the model to predict WDIs. PBPK models are typically 
developed using general programming software such as 
Berkeley Madonna and R language (Lin et al. 2017). The 
present model was developed and calibrated in Berke-
ley Madonna, and then converted into R language. In 
order for the model to be user-friendly, the final step is 
to convert the regular PBPK model into an iPBPK inter-
face using the Shiny package in R. The screenshot of the 
iPBPK interface for flunixin is shown in Fig. 1c.

Data source for model establishment

All pharmacokinetic data used in the model calibration and 
evaluation were collected from FARAD Comparative Phar-
macokinetic Database “BibKinFinder”. Pharmacokinetic 
data in swine and beef cattle after IV, IM or SC administra-
tion of flunixin meglumine were acquired. The pharmacoki-
netic data in dairy cows were excluded due to the additional 
elimination route of flunixin through milk secretion, which 
is different from the elimination routes in swine and beef 
cattle. A brief description and key information of selected 
pharmacokinetic studies are summarized in Table 1. The 
graphic pharmacokinetic data were digitized from these 

Fig. 1   Workflow for the interactive physiologically based pharma-
cokinetic (iPBPK) model development. a The diagram of the work-
flow for the current project. Pharmacokinetic data of food-producing 
animals were collected from the FARAD databank. Then, a mecha-
nistic-based PBPK model was established and validated with these 
pharmacokinetic data. Based on the PBPK model, the population or 
probabilistic analysis with Monte Carlo method was applied to pre-
dict tissue residues and withdrawal intervals for the drug. Finally, 

the PBPK model was converted to a web-based user-friendly iPBPK 
interface. b Model structure of the PBPK model for flunixin in swine 
and cattle. The model contains both flunixin free acid and 5-OH flu-
nixin submodels. The IV, IM and SC administrations are involved in 
the model. The enterohepatic circulation of flunixin is included in the 
model. The blood compartment was simulated as a mixed blood com-
partment (Lin et  al. 2015). c A screenshot of the interactive physi-
ologically based pharmacokinetic (iPBPK) interface for flunixin
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pharmacokinetic studies using WebPlotDigitizer (version 
4.1, https​://autom​eris.io/WebPl​otDig​itize​r/). All raw data 
are provided in the Supplementary Materials.

PBPK model structure

The present PBPK model for flunixin in swine and cattle 
was designed based on previous PBPK models for flunixin 
(Leavens et al. 2014; Lin et al. 2016b). The model struc-
ture is shown in Fig. 1b. Submodels for flunixin, the par-
ent compound, and 5-OH flunixin, its major metabolite, 
were included in the model. The metabolite submodel was 
included so that this model structure can be readily extrapo-
lated to dairy cows for which the marker residue in milk 
is 5-OH flunixin. The enterohepatic circulation of flunixin 
was also considered in the model based on published studies 
(Horii et al. 2004; Konigsson et al. 2003; Malik et al. 2016). 
The parent drug submodel consisted of six compartments 
corresponding to different tissues in the body, including 
liver, kidneys, muscle, fat, and the rest of body connected 
by the circulating blood system, and the metabolite sub-
model included blood, liver, kidney and the rest of body 
compartments. For food safety assessment purposes, all the 
major edible tissues, including liver, kidney, muscle and fat 
were included for the parent drug submodel. Each compart-
ment was defined with a tissue weight and tissue blood flow 
rate calculated based on recently reported values (Li et al. 
2017). The compartments for urine and feces were included 
as virtual excretory compartments without volume changes. 
The flow-limited model, which performed well for previous 
PBPK models of flunixin and other veterinary drugs (Lin 
et al. 2016a), was applied in the current model.

Model parameterization and calibration

The physiological parameters related to beef cattle and 
swine were obtained from previous experimental studies 
and published PBPK models (Buur et al. 2005; Leavens 
et al. 2014; Li et al. 2017; Lin et al. 2016b). The details for 
model parameterization and calibration are included in the 
Supplementary Materials. The values of all physiological 
parameters and chemical-specific parameters used in the 
PBPK model for beef cattle and swine are shown in Table 2.

Model evaluation and sensitivity analysis

The evaluation of the PBPK model was performed by com-
paring model simulations with experimental pharmacoki-
netic data not used in the model calibration (Table 1). If the 
simulation results matched the reported pharmacokinetic 
profiles and were generally within the range of twofold of 
the measured values, the model was considered reasonable 
and validated on the basis of World Health Organization Ta
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PBPK modeling guidelines (WHO 2010). Considering that 
calibration data sets and evaluation data sets are obtained 
under different conditions, some level of discordance is 

to be expected (WHO 2010). The goodness of fit between 
log-transformed values of observed and predicted drug 
concentrations were further analyzed with linear regression 

Table 2   Parameter values used in the PBPK model for flunixin in beef cattle and swine

For parameters estimated through model fitting, please refer to the “Materials and methods” for further information on which datasets were used 
to estimate values for these parameters

Parameter Abbreviation Beef Cattle Swine References

Cardiac output (L/h/kg) QCC 5.97 8.543 Li et al. (2017)
Tissue volume (fraction of body weight, unitless)
 Arterial blood VartC 0.010 0.016 Li et al. (2017)
 Venous blood VvenC 0.030 0.044 Li et al. (2017)
 Liver VLC 0.014 0.023 Li et al. (2017)
 Kidney VKC 0.0025 0.0045 Li et al. (2017)
 Muscle VMC 0.270 0.355 Li et al. (2017)
 Fat VFC 0.150 0.235 Li et al. (2017)
 Rest of body VrestC 0.5235 0.3225 Total adds to 1
 Rest of body for 5OH flunixin VrestC1 0.9435 0.9125 Total adds to 1

Blood flow (fraction of cardiac output, unitless)
 Liver QLC 0.405 0.273 Li et al. (2017)
 Kidney QKC 0.09 0.116 Li et al. (2017)
 Muscle QMC 0.18 0.293 Li et al. (2017)
 Fat QFC 0.08 0.128 Li et al. (2017)
 Rest of body QrestC 0.245 0.19 Total adds to 1
 Rest of body for 5OH flunixin QrestC1 0.505 0.611 Total adds to 1

Absorption rate constant (/h)
Absorption rate constant of IM administration (/h) Kim 0.5 1 Model fitting
Absorption rate constant of SC administration (/h) Ksc 0.4 0.4 Model fitting
Molecular weight for flunixin MW 296.24 296.24 PubChem
Molecular weight for 5OH flunixin MW1 312.24 312.24 PubChem
Tissue:plasma partition coefficient for the parent drug (unitless)
 Liver PL 10.52 10.52 Model fitting
 Kidney PK 4 4 Model fitting
 Muscle PM 0.5 0.5 Model fitting
 Fat PF 0.6 0.6 Model fitting
 Rest of body Prest 8 8 Model fitting

Tissue:plasma partition coefficient for 5OH flunixin (unitless)
 Liver PL1 9.26 9.26 Model fitting
 Kidney PK1 4 4 Model fitting
 Rest of body Prest1 5 5 Model fitting

Hepatic metabolic rate constant (5OH flunixin) (/h/kg) KmetC 0.2 0.2 Model fitting
Rate constant for the regeneration of flunixin free acid from metabo-

lites and enterohepatic circulation (/h/kg)
KehcC 0.05 0.15 Model fitting

Percentage of plasma protein binding for FLU (unitless) PB 0.95 0.95 Model fitting
Percentage of plasma protein binding for 5OH FLU (unitless) PB1 0.99 0.99 Model fitting
Biliary elimination rate for flunixin (L/h/kg) KbileC 0.5 0.1 Model fitting
Biliary elimination rate for 5OH flunixin (L/h/kg) KbileC1 0.1 0.1 Model fitting
Urinary elimination rate constant for FLU (L/h/kg) KurineC 0.1 0.1 Model fitting
Urinary elimination rate constant for 5-OH FLU (L/h/kg) KurineC1 0.2 0.1 Model fitting
Intestinal transit rate constant (/h) Kint 0.4 0.4 Zeng et al. (2017)
Fecal elimination rate constant (/h) Kfeces 0.5 0.5 Model fitting
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analyses and the determination coefficient (R2) was calcu-
lated for both calibration and evaluation results. The R2 is 
an indicator for the overall model simulation performance, 
and a model simulation with a R2 value equal to or higher 
than 0.75 is typically considered acceptable (Li et al. 2018). 
The goodness of fit was also evaluated with the mean abso-
lute percentage error (MAPE) value. The calculation of the 
MAPE values was carried out based on previously reported 
methods, and MAPE values lower than 50% were considered 
as an acceptable prediction (Cheng et al. 2016; Lin et al. 
2017).

The sensitive parameters of the current PBPK model were 
determined using the sensitivity analysis. A local sensitivity 
analysis was performed for a discrete time point of 24 h to 
determine which parameters were most influential on the 
24-h area under the curve (AUC) of plasma, liver, kidney 
concentrations of flunixin, and the 24-h AUC of plasma con-
centrations of 5-OH flunixin. Briefly, each parameter value 
was increased by 1% and the corresponding 24-h AUC of 
flunixin or 5-OH flunixin concentrations were simulated. 
Normalized sensitivity coefficient (NSC) was calculated 
using equations reported previously (Yoon et al. 2009; Lin 
et al. 2011).

Establishment of the population PBPK model

Once the PBPK model was validated, population-based 
PBPK model simulation of flunixin was conducted using 
the Monte Carlo method to obtain numerical results based 
on repeated random sampling of parameter values from 
specified distribution of each parameter. This method has 
been used in the applications of PBPK modeling to estimate 
drug tissue residues and WDIs in the area of food safety 
(Yang et al. 2012; Zeng et al. 2017). In the current PBPK 
model for flunixin, Monte Carlo simulations were applied 
to estimate the effects of parameter uncertainties and the 
intra-species variability of beef cattle and swine on flunixin 
concentrations in plasma and tissues. For these simulations, 
all parameters for cattle and swine models distributed ran-
domly around the mean values are specified in Table S2 and 
Table S3, respectively. Coefficients of variance (CV) of some 
physiological parameters (i.e., the body weight, cardiac out-
put, and tissue volume fractions of liver and kidneys, and 
the fractions of blood flows in liver for cattle in Table S2, as 
well as the body weight, cardiac output, and tissue volume 
fractions of liver, kidneys, muscle and fat and the fractions 
of blood flows in kidneys and muscle for swine in Table S3) 
were calculated based on the experimental data. For other 
physiological or chemical-specific parameters with no exper-
imental data, their CVs were assigned as 20% for tissue to 
plasma partition coefficients and 30% for other physiological 
parameters, absorption, protein binding, and elimination rate 
constants based on the default assumptions used in other 

PBPK models (Clewell and Clewell 2008; Henri et al. 2017; 
Yang et al. 2015, 2016). Log-normal distributions of model 
parameters were assumed for all chemical-specific param-
eters such as partition coefficients, absorption rate constants, 
elimination rate constants, the enterohepatic circulation 
rate constant, etc. Physiological parameters, including body 
weights, cardiac outputs, and fractions of blood flows and 
tissue volumes were assumed to be normally distributed as 
reported in previous models (Li et al. 2017; Tan et al. 2006; 
Yang et al. 2015).

The detail of Monte Carlo simulation in Berkeley 
Madonna was introduced in a previous PBPK model for pen-
icillin G in swine and cattle (Li et al. 2017) and the Monte 
Carlo codes of the current model in Berkeley Madonna are 
available in Supplementary Materials. Briefly, model param-
eters were randomly assigned around the mean values used 
or estimated in model calibration by their probabilistic dis-
tributions. The values of all physiological and chemical-
specific parameters were randomly selected based on their 
distributions during each Monte Carlo simulation. The sum 
of tissue volume fractions and the sum of blood flow frac-
tions should both be equal to one (i.e., 100%) in the PBPK 
model. Since the parameter values of tissue volume frac-
tions and blood flow fractions were randomly selected in 
the Monte Carlo analysis, their sum may not be equal to one 
anymore. Therefore, the sum of tissue volume fractions and 
the sum of blood flow fractions after Monte Carlo simulation 
were adjusted/scaled to be equal to one (i.e., 100%) to ensure 
the plausibility and mass balance for the PBPK model (Cov-
ington et al. 2007). The Monte Carlo simulations of current 
PBPK models for flunixin were set up as batch runs for 1000 
iterations per Monte Carlo simulation in Berkeley Madonna.

Application of the population PBPK model 
to predict withdrawal intervals

The population PBPK model can be used to predict the dis-
tributions and the variability of plasma and tissue flunixin 
concentrations after label or extralabel administration in a 
large and diverse population of swine and beef cattle. For 
cattle, IM injection is a common extralabel use. Therefore, 
IV and IM administrations at the IV label dosing regimen 
(2.2 mg/kg daily for 3 days) were simulated as representative 
label dose and extralabel dose, respectively, in beef cattle to 
predict WDIs. For swine, since there were no pharmacoki-
netic data available for SC injections, only the label dose 
and route with single IM injection and the three repeated 
IM injections at 24-h intervals were simulated using the 
population PBPK model. Each Monte Carlo simulation was 
run with 1000 iterations. The median value, 1st and 99th 
percentiles of the simulated plasma and tissue concentra-
tions of flunixin were calculated and plotted. The predicted 
WDIs in edible tissues were determined as the time when 
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the predicted flunixin concentration in each target tissue fell 
below the tolerance of the corresponding tissue for the 99th 
percentile of the simulated animal population. The toler-
ance for flunixin in edible tissues of cattle is 0.125 µg/g for 
liver and 0.025 µg/g for muscle (FDA 1998) (Table S1). 
The tolerance for flunixin in pigs is 0.030 µg/g for liver tis-
sue and 0.025 µg/g for muscle (FDA 2005). Due to the fact 
that the tolerance of flunixin for kidneys, fat and plasma is 
not defined, the tolerance for liver (0.125 µg/g for cattle, 
0.030 µg/g for swine) was used for kidneys, fat and plasma.

Results from each Monte Carlo simulation can be used 
to calculate one WDI value. However, the calculated WDI 
based on one Monte Carlo simulation does not have 95% 
confidence interval, which is different from the regulatory 
definition of withdrawal period that has a 95% confidence 
interval (FDA 2012). To calculate the 95% confidence inter-
val of the estimated WDI, the population PBPK model in 
Berkeley Madonna was converted into R program, and then 
1000 Monte Carlo simulations with 1000 iterations per 
Monte Carlo simulation were performed. WDIs for each of 
these 1000 Monte Carlo simulations were calculated based 
on the 99 percentile of the simulated 1000 animals. The cen-
tral tendencies and 95% confidence intervals of these 1000 
WDIs were calculated for label and extralabel therapeutic 
regimens of flunixin in cattle and swine. In addition, we 
tested whether the calculated WDI based on a small sample 
size of 25 animals is representative of the calculated WDI 
based on a large population of 1000 animals. To achieve this, 
we calculated the WDI based on 25 samples bootstrapped 
from 1000 simulated animals in a Monte Carlo simulation, 
and we repeated this calculation 1000 times. And then, we 
compared the calculated WDIs based on small sample size 
of 25 animals to the WDI based on 1000 animals. The thera-
peutic scenario of cattle treated with 3 repeated IV injections 
of flunixin (2.2 mg/kg) was used for this simulation.

Translation of the PBPK model into a user‑friendly 
iPBPK interface (also called extralabel withdrawal 
interval simulator)

Firstly, the PBPK model code in Berkeley Madonna format 
was converted into R using a published method for the PBPK 
model code conversion (Lin et al. 2017). Two different ODE 
solver packages, “deSolve” and “mrgsolve” (Baron et al. 
2018), were evaluated to solve the differential equations 
in the R code. The simulation speed using the “mrgsolve” 
package was much faster than using the “deSolve” package 
(results described below), so the “mrgsolve” package was 
chosen for coding the user-friendly iPBPK interface. The 
iPBPK interface was constructed with the “Shiny” package 
based on the R model code. A screenshot of the design of 
the iPBPK interface is shown in Fig. 1c. Please refer to Sup-
plementary Materials for more details about this interface. 

An example output report and the detailed tutorial are also 
provided in the Supplementary Materials.

Results

Model calibration

The PBPK models for flunixin in cattle and swine were 
used to simulate flunixin and 5-OH flunixin concentrations 
in plasma and edible tissues after different therapeutic regi-
mens used in the previous pharmacokinetic studies. Model 
predictions were compared with observed concentrations in 
beef cattle exposed to flunixin meglumine through IV, IM 
or SC injections and in swine exposed through IV and IM 
administrations (representative results are shown in Fig. 2). 
Overall, the model well fitted the kinetic profiles of flunixin 
in plasma and edible tissues in cattle and swine. In particu-
lar, the model predicted the flunixin residues in the plasma 
and edible tissues accurately at the terminal time points, 
which are most important for residue monitoring and the 
determination of the time when concentrations of residues 
in the edible tissues fall at or below tolerance. The model 
only slightly under predicted the last time point for flunixin 
concentrations in liver (Fig. 2i) in swine. In addition, as 
shown on Fig. 2f, h, the model simulations for plasma con-
centrations of 5-OH flunixin corresponded to the observed 
data well. Some additional calibration results are shown in 
Supplementary Materials Fig. S1 and Fig. S2.

Model evaluation

The calibrated PBPK models for flunixin in swine and cattle 
were evaluated with pharmacokinetic data not applied for 
the model calibration. The model evaluation results for beef 
cattle and swine exposed to flunixin meglumin through IV or 
IM administrations are shown on Fig. 3. From these results, 
the model accurately predicted the observed independent 
pharmacokinetic data for model evaluation. The simulated 
results properly captured the pharmacokinetic characteristics 
for both single and repeated dose administrations of these 
pharmacokinetic data. The model performance for 5-OH flu-
nixin was also evaluated by the comparison with plasma and 
liver concentrations of 5-OH flunixin in beef cattle (Fig. 3g, 
h). The goodness of fit for model calibration and evalua-
tion results of cattle and swine were analyzed using the lin-
ear regression and the MAPE value. The overall R2 values 
for these linear regression analyses were higher than 0.90, 
which indicates that the current PBPK model well simulates 
the pharmacokinetic data of flunixin both in cattle and swine 
(Fig. S3). All results of MAPE analyses for the calibration 
and evaluation results from the current model were lower 
than 50% (Fig. S4). Results of both analyses suggest that the 
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model adequately simulates the observed data sets used for 
model calibration and evaluation.

Application of the population PBPK model

The population analysis for the current PBPK model 
of flunixin was performed using the Monte Carlo sam-
pling technique. All physiological and chemical-specific 
parameters used in the PBPK model were involved in the 
population analysis. The tolerances of flunixin are only 

available in liver and muscle for cattle and swine. Based 
on the simulation results after label or extralabel use of 
flunixin meglumine in cattle and swine, the concentra-
tions of flunixin in the liver were depleted slower than in 
muscle (Fig. 4a, e, i, m). Therefore, the liver was chosen 
as the tissue to determine the WDIs for label or extralabel 
use of flunixin meglumine in beef cattle and swine. The 
Monte Carlo simulations showed that the WDIs after three 
repeated IV injections and three repeated IM administra-
tions with label dose 2.2 mg/kg in beef cattle were 5.76 

Fig. 2   Model calibration results of the PBPK model for flunixin 
in cattle (a–f) and swine (g–l). Comparisons of model predictions 
(solid lines) and observed data (red circles) are shown for concen-
trations of flunixin in the plasma, liver and muscle from beef cattle 
exposed to flunixin via single IV injection (a; 2.2 mg/kg; Odensvik 
and Johansson 1995), single IM injection (b; 2.2  mg/kg; Odensvik 
and Johansson 1995), single SC administration (c; 2.2 mg/kg; Shelver 
et al. 2013), 3 repeated IV administrations (d and e; 2.2 mg/kg; FDA 

1998), and in the plasma, liver, kidneys, muscle and fat from swine 
exposed to flunixin via single IV injection (g; 3 mg/kg; Howard et al. 
2014), and 3 repeated IM injection (i–l; 2.2  mg/kg; FDA 2005). 
Model predictions are shown for concentrations of 5-OH flunixin in 
plasma compared with observed data from single SC administration 
(f; 2.2 mg/kg; Shelver et  al. 2013) and from single IV injection (h; 
3 mg/kg; Howard et al. 2014)
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and 6.13 days, respectively (Fig. 4a, e). The predicted 
WDIs after single dose and three doses via IM injections 
with label dose 2.2 mg/kg in swine were 12.06 days and 
15.45 days, respectively (Fig. 4i, m). The exact model-
predicted WDIs are reported in this manuscript, but in 
practice, if the predicted WDI is a fraction of a day, the 
recommended WDI should be rounded up to the next 
whole day. The label withdrawal periods were obtained 
from the Veterinarian’s Guide to Residue Avoidance Man-
agement (VetGRAM) of FARAD (Riviere et al. 2017). The 
labeled withdrawal period via IV injection is 4 days for 
edible tissues in beef cattle, and the labeled withdrawal 

period through IM administrations is 12 days for edible 
tissues in swine.

The predicted WDIs and their 95% confidence intervals 
are summarized in Table S4. With 1000 simulations of 
1000 samples each, the 95% confidence intervals in gen-
eral cover a small range. Especially, when the WDI was 
rounded up to the next whole day, the upper and lower 
bounds of the 95% confidence intervals were the same 
as the mean value of the WDI. Our result is consistent 
with the result in a previously published PBPK model for 
sulfamethazine in swine (Buur et al. 2006b). This is not 

Fig. 3   Model evaluation results of the PBPK model for flunixin in 
beef cattle (a–h) and swine (i–p). Comparisons of model predic-
tions (solid lines) and observed data (red circles) are shown for con-
centrations of flunixin in the plasma, liver, kidneys and muscle from 
beef cattle exposed to flunixin via single IV injection (a; 2.2 mg/kg; 
Odensvik 1995), 4 repeated IV injections (b; 2.2 mg/kg; Jaroszewski 
et  al. 2008), 3 repeated IV administrations (c–f; 2.2  mg/kg; Kissell 
et al. 2016), and from swine exposed to flunixin via single IV injec-

tion (i, j and m; 2.2 mg/kg, 1.1 mg/kg and 2 mg/kg; Yu et al. 2007 
and Buur et al. 2006a), single IM administration (k, l, n−p; 2.2 mg/
kg, 1.1  mg/kg and 2.4  mg/kg; Yu et  al. 2007 and EMEA 1999). 
Model predictions are shown for concentrations of 5-OH flunixin 
in plasma compared with observed data from 4 repeated IV injec-
tions (g; 2.2 mg/kg; Jaroszewski et al. 2008) and from 3 repeated IV 
administrations (h; 2.2 mg/kg; Kissell et al. 2016)
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unexpected as the WDI was calculated based on the data 
from 1000 animals, which is representative of the result 
for the entire population; thus, the WID result is relatively 
stable and reliable. On the other hand, the WDIs calculated 
based on the randomly selected 25 samples may have val-
ues smaller or larger than the predicted WDI based on the 
1000 samples (Fig. S5). Some extreme WDI values based 
on the data from 25 samples could be up to 2 days different 
from the predicted WDI based on 1000 animals.

User‑friendly interface establishment 
and improvement

The code for the PBPK model for flunixin in cattle and 
swine was translated from Berkeley Madonna into R using 
the “deSolve” and “mrgsolve” packages. The average simu-
lation time for each iteration using “deSolve” was longer 
than using “mrgsolve”. Especially for a larger number of 
iterations, the differences of simulation time were consider-
able (Table S5). For the 1000-iteration simulation, code in 

Fig. 4   Results of the population PBPK model for flunixin in beef cat-
tle and swine. The label dose (2.2 mg/kg) of 3 repeated IV injections 
with 24-h intervals and the extralabel use of flunixin of 3 repeated 
IM injections with 24-h intervals were simulated for beef cattle, and 
the single IM injection of 2.2 mg/kg body weight or 3 repeated IM 
injections of 2.2 mg/kg body weight with 24-h intervals were simu-
lated for swine. Each of the simulations was run for 1000 iterations. 
The median, 1st and 99th percentiles of simulated results were plot-
ted. The tolerance is shown on each of panels using the dotted line. 

The extended withdrawal intervals were determined when the tissue 
concentrations of flunixin fall below tolerance for the 99th percentile 
of the population. Tolerance of flunixin for liver is 0.125  µg/g, and 
for muscle is 0.025 µg/g in cattle. The tolerance of flunixin in swine 
is 0.030  µg/g for liver, and 0.025  µg/g for muscle. As no defined 
tolerance is available for kidney and plasma, the tolerance for liver 
(0.125  µg/g in cattle and 0.030  µg/g in swine) was used for kidney 
and plasma
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“deSolve” would take around 10 h, and “mrgsolve” code 
only consumed around 6 s. Using the user-friendly interface, 
non-modelers or regular users could easily use and apply the 
population PBPK model to predict tissue residues of flunixin 
and determine the model-predicted WDIs in real time.

Discussion

In the present study, a comprehensive PBPK modeling 
framework from pharmacokinetic data collection to iPBPK 
interface development was constructed. A new iPBPK model 
for flunixin meglumine through IV, IM and SC administra-
tions in beef cattle and through IV and IM administrations 
in swine was established to illustrate the detailed procedure 
of this framework. The flunixin model well predicted tis-
sue residues of flunixin and 5-OH flunixin in plasma and/
or edible tissues for both cattle and swine. Population simu-
lations with Monte Carlo method were incorporated into 
the framework so that each iPBPK model can be applied to 
predict times needed for drug concentrations to fall below 
established tolerances following extralabel use. Thus, the 
new PBPK model of flunixin can be used to predict the tis-
sue residues and estimate extralabel WDIs in beef cattle and 
swine. This iPBPK modeling framework can be extrapolated 
to other food animal species or other specific use classes. 
This new iPBPK modeling framework represents a signifi-
cant advancement in the field of toxicology and it greatly 
improves the use of PBPK modeling approach in WDI esti-
mation. This framework still has some limitations, but it 
lays a foundation to facilitate moving drug withdrawal time 
estimation from empirical methods to mechanistic PBPK 
approaches, which are now user-friendly and in real time.

PBPK modeling is a valuable tool for regulatory science 
in many different areas such as risk assessment (EPA 2006), 
exposure science (Cohen Hubal et al. 2018), and new drug 
development (FDA 2018). However, some existing issues 
limit the application of PBPK modeling by regulatory agen-
cies. The shortage of individuals as modelers with sufficient 
trainings in modeling and simulation restricted the devel-
opment and application of PBPK modeling in the area of 
risk assessment (Tan et al. 2018). One of the advantages 
of iPBPK platform is providing a user-friendly interface, 
which helps non-modelers to use the PBPK models. The 
commercial software, such as GastroPlus and Simcyp, are 
well accepted by FDA to waive the drug–drug interaction 
studies and bioequivalence studies (Shebley et al. 2018). 
The iPBPK platform is based on R, and is more flexible and 
more transparent compared to commercial software. R is a 
free software environment to use for programming, which 
makes it potential to be used across agencies and organiza-
tions. It is also one of the top three mostly used softwares for 
PBPK modeling (Paini et al. 2017), and PBPK model coding 

in other programming languages can be translated to R (Lin 
et al. 2017). Furthermore, the iPBPK interface is a web-
based graphical user interface (GUI). The web-based GUI 
is not even requiring the installation of R, and can be used 
directly through the webpage or a server (Wojciechowski 
et al. 2015). It is similar as a standalone software but with 
the flexibility to be updated and revised according to dif-
ferent requirements. Especially with the development of R 
packages to do the statistical analysis for PBPK modeling 
(Hsieh et al. 2018; Carpenter et al. 2017) and to help in the 
analysis of high-throughput data (Pearce et al. 2017), all 
these functions achieved through these R packages can be 
incorporated into the iPBPK platform for further improve-
ments. The iPBPK platform concept has the potential to fill 
the gap for the application of PBPK modeling by regula-
tory agencies. In summary, we anticipate that the concept 
of the iPBPK platform will be the direction of future PBPK 
models, which will facilitate the use of PBPK modeling by 
non-modelers and regulatory agencies. The present work 
represents a proof-of-concept and our first step towards this 
direction.

The current PBPK model was designed for flunixin in 
both cattle and swine with the same model structure. Since 
the metabolite of flunixin, 5-OH flunixin, is the marker resi-
due of flunixin in milk and the present model includes the 
metabolite submodel for 5-OH flunixin, this model can be 
extrapolated to dairy cows to predict 5-OH flunixin con-
centrations in milk following label and extralabel admin-
istrations. In addition, the enterohepatic circulation of flu-
nixin was considered in the current model. As flunixin was 
reported to undergo enterohepatic circulation in different 
animal species such as cats and dairy goats (Horii et al. 
2004; Konigsson et al. 2003; Malik et al. 2016), this process 
was considered in the current model and the model simula-
tion was improved. Recently, population mixed-effects phar-
macokinetic models of flunixin were developed to predict 
tissue residues and WDIs in cattle (Wu et al. 2013). Popula-
tion pharmacokinetic modeling, which combines available 
pharmacokinetic data to make a population inference, is a 
useful approach in the area of pharmacology and toxicol-
ogy (Bon et al. 2018; Li et al. 2015a; Martin-Jimenez and 
Riviere 1998). However, compared to PBPK models, the 
population pharmacokinetic model is not a physiologically 
based mechanistic method, which limits the extrapolation of 
the model beyond the inference range of experimental data 
(Lin et al. 2016a).

From the sensitivity analysis results, the uncertainties of 
a few parameters have influences on the predictions of flun-
ixin residues. The plasma concentration and tissue residues 
of flunixin are less sensitive to parameter values compared 
to 5-OH flunixin. The partition coefficients of kidneys (PK) 
for flunixin, of the rest of body for 5-OH flunixin (Prest1), 
the plasma protein binding for both flunixin (PB) and 5-OH 
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flunixin (PB1), as well as the metabolic rate constant for 
5-OH flunixin (KmetC1) were highly influential on the 
predictions of the plasma concentrations of 5-OH flunixin. 
The partition coefficients were estimated by fitting to the 
selected pharmacokinetic datasets due to lack of experi-
mentally measured values. The plasma protein binding of 
flunixin was measured experimentally (Skidmore et al. 2008; 
Thiry et al. 2017), and our model-fitted value is close to the 
reported value. After an extensive literature search, limited 
information was available from experimentally measured 
PB1 for 5-OH flunixin. Since the sensitivity analysis has 
shown that these parameters are the most influential of the 
model, it would be very interesting to determine them exper-
imentally to dissipate an important uncertainty. Additionally, 
global sensitivity analysis can be applied to the PBPK model 
to determine the influences of parameter interactions and 
non-linear processes on the sensitivity of model parameters 
(McNally et al. 2011). Global sensitivity analysis cannot be 
achieved in Berkeley Madonna. However, since the iPBPK 
platform is coded in R language, the global sensitivity analy-
sis can be performed in R program in the future. There are 
different packages available in R to perform global sensitiv-
ity analysis for PBPK models, such as the packages “sensi-
tivity” (Pujol et al. 2017) and “pksensi” (Hsieh et al. 2018).

Physiological parameters are a key component of a PBPK 
model. By changing physiological parameter values under 
different physiological conditions, PBPK models can be 
extrapolated to many other populations, including differ-
ent age groups, different species, and diseased populations. 
PBPK models for pediatrics (Edginton et al. 2006) and 
elderly populations (Schlender et al. 2016) are widely used 
in the area of clinical pharmacology for dose determination 
(Templeton et al. 2018) and drug development (Rowland 
et al. 2011) for special subpopulations. PBPK models have 
also been applied to conduct human health risk assessment 
in vulnerable subpopulations, such as pregnancy women, 
children and elders (Clewell and Gearhart 2002; El-Masri 
et al. 2016). For food animals, some special production 
classes such as bob veal calves, heavy sows and culled dairy 
cows, which have different physiological conditions com-
pared to market-age animals, can also be simulated with 
a PBPK model using corresponding physiological values. 
Disease conditions also affect the pharmacokinetic process 
of drugs, and some disease conditions, such as chronic kid-
ney disease (Tan et al. 2019), heart failure (Rasool et al. 
2015), and liver cirrhosis (Li et al. 2015b) have been well 
simulated using PBPK models in humans. PBPK models 
can also be used to study the ethnic differences (Zurlinden 
and Reisfeld 2017), gender differences (Kim et al. 2018), 
drug–drug interactions (Bois 2010), and lifetime exposures 
(Weijs et al. 2010).

In food animals, the breed differences, disease condi-
tions and drug–drug interactions are also potential areas of 

applications of PBPK modeling. The current PBPK model 
for flunixin in swine and cattle can be extrapolated to dairy 
cows and dairy goats to predict the drug residues in milk, 
and similar extrapolation to dairy cows has been achieved by 
adding the mammary gland compartment to a PBPK model 
in beef cattle for penicillin G (Li et al. 2018). By adding the 
empirical (Chittenden and Riviere 2016) or mechanistic der-
mal administration compartments (Anissimov and Roberts 
2014) to the current PBPK model, the model can be used for 
the transdermal administration of flunixin. The physiological 
parameters for humans and lab animals are well recorded 
and have been systematically reviewed (Brown et al. 1997). 
A systematic literature search and review of physiological 
parameters in food-producing animals is warranted and will 
facilitate the application of PBPK modeling tools in the field 
of food safety and risk assessment. In our ongoing literature 
search project on physiological parameters in different food 
animal species, we found that there are divergent values for 
physiological values in food animals. The variabilities for 
the physiological values may be due to the different experi-
mental methods, different breeds, different ages and many 
other reasons. When calculating the mean, standard devia-
tion, and range of a specific parameter, it is important to 
use physiological parameter values determined using the 
same or similar experimental methods from animals with 
similar ages and physiological conditions. Harmonization 
of the physiological databases for food animals remains to 
be a data gap and a challenge in the field of food safety and 
risk assessment.

This Monte Carlo sampling technique for population anal-
ysis has been applied for PBPK modeling in human drugs 
and environmental pollutants (Yang et al. 2016). This strat-
egy was also applied to the population analysis in this PBPK 
model. Similar population PBPK models were recently 
reported (Elwell-Cuddy et al. 2018; Yang et al. 2016). For 
the current model, variations of all physiological and chem-
ical-specific parameters were considered in the Monte Carlo 
analysis to better predict the wide range of tissue residue 
concentrations, and to simulate the diversity in the popula-
tion of food animals. The distributions and variabilities of 
physiological parameters were based on previous reported 
values (Li et al. 2017). The default coefficients of variance 
were used only for parameters with no experimental data 
available. The present Monte Carlo analysis, considering 
variances of all parameters, may help to make the simula-
tions more realistic for the diverse population of livestock 
being treated with flunixin meglumine.

The current population PBPK model can also be extrap-
olated to simulate the extralabel use scenarios of flunixin 
meglumine. The commonly seen extralabel administrations 
are IM injection in cattle and SC injection in swine. The 
label withdrawal period does not apply to extralabel use and 
violative residues may result if the withdrawal interval is 
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not extended. For on-label use, the model-predicted WDIs 
from Monte Carlo analyses for both swine and cattle based 
on respective tolerances were close to FDA label withdrawal 
periods (e.g., predicted 6 days vs. labeled 4 days in cattle; 
predicted 13 days vs. labeled 12 days in swine). For extra-
label use of flunixin meglumine via the IM route in cattle, 
the WDI predicted by the current model (7 days) is one day 
more than the predicted WDI for the label use of flunixin 
meglumine via IV route. For extralabel use of flunixin meg-
lumine with three-repeated doses through IM in swine, the 
WDI predicted by the current model (16 days) is 4 days 
more than the predicted WDI for the label use of flunixin 
meglumine with single IM dose. The predicted WDIs of 
extralabel doses from the current model are more protective 
to avoid violative tissue residues of flunixin in beef cattle 
and swine. Estimation of drug residue levels at the terminal 
phase using a well-validated PBPK model is important for 
reducing violations of illegal drug residues in edible tissues, 
as well as for food-producing animals destined for export to 
other countries with stringent residue criteria.

While the present study represents an advancement in 
the application of PBPK modeling in food animals, this 
study has several limitations. Specifically, the model was 
calibrated in Berkeley Madonna and there were several 
highly sensitive parameters that were estimated due to lack 
of experimentally measured values. To convert the model 
into a web-based interface and to perform more advanced 
Monte Carlo simulations, the model was later translated to 
R program. The parameter estimation module in Berkeley 
Madonna was less robust than the available parameter-fitting 
algorithms in R, resulting in uncertainties in the estimated 
parameters. Also, there were some uncertainties in the con-
version of the codes from Berkeley Madonna into R due to 
different syntax, semantics, and different ordinary differen-
tial equation solvers between the two software programs. 
As a result, many new equations, conversion parameters, 
functions had to be created in order to make sure the simu-
lation results in the R program are relatively comparative 
to the results from the originally created model in Berke-
ley Madonna. Therefore, it would be ideal if the model was 
calibrated directly from R program, which would eliminate 
all the uncertainties in the code conversion between soft-
ware programs. This is the future direction of the continued 
improvement of the iPBPK framework. In this regard, our 
lab recently reported a PBPK model for perfluorooctane sul-
fonate in rodents and humans that was directly calibrated in 
R program and the entire R code was published in the Sup-
plementary Materials (Chou and Lin 2019). In addition, the 
present iPBPK framework only contains one drug (flunixin) 
with two species and three administration routes (IV, IM 
and SC). Dermal administration of flunixin has also been 
approved in cattle by US FDA recently. Additional improve-
ments are needed to extend the model to additional routes, 

other drugs, and other species. Overall, the present work 
serves as a proof-of-concept and a basis for future develop-
ment in this field.

In summary, the present PBPK model of flunixin ade-
quately simulates observed concentrations of flunixin resi-
dues in edible tissues of swine and cattle following label 
and extralabel routes of administration. The application of 
the population PBPK model via Monte Carlo simulations to 
estimate the WDIs for flunixin following label and extralabel 
use demonstrates the possibility to use PBPK modeling to 
provide more protective WDIs. The framework for a web-
based and user-friendly iPBPK interface development pro-
vides an easy and convenient methodology to develop and 
apply population PBPK models to predict drug tissue resi-
dues and WDIs. This iPBPK framework can be extrapolated 
to other drugs and other food animal species. This study 
represents our first step of converting PBPK model codes 
into web-based interfaces to facilitate applications of PBPK 
modeling in food safety assessment. This iPBPK framework 
still has several limitations, but it represents a proof-of-con-
cept and a significant improvement in the development and 
application of mechanistic and quantitative tools in the field 
of toxicology.
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